Pirates Problem

Posted: May 20, 2009 in Br@!n Te@$er$
Tags: , , ,

pirateThere are five rational pirates, A, B, C, D and E. They find 100 gold coins. They must decide how to distribute them.

The Pirates have a strict order of seniority: A is superior to B, who is superior to C, who is superior to D, who is superior to E.

The Pirate world’s rules of distribution are thus: that the most senior pirate should propose a distribution of coins. The pirates should then vote on whether to accept this distribution; the proposer is able to vote, and has the casting vote in the event of a tie. If the proposed allocation is approved by vote, it happens. If not, the proposer is thrown overboard from the pirate ship and dies, and the next most senior pirate makes a new proposal to begin the system again.

Pirates base their decisions on three factors. First of all, each pirate wants to survive. Secondly, each pirate wants to maximize the amount of gold coins he receives. Thirdly, each pirate would prefer to throw another overboard, if all other results would otherwise be equal.

Think before you click this link for Solutions !!

Solution

Advertisements
Comments
  1. denzen says:

    wow man cool where did u get that from

  2. google man.. like this na?

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s